Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2024-09-12

Climate Crisis and Social Inequality: A Bibliometric Review of Environmental Sociology Research (2014–2024)

Department of Sociology, Universitas Muhammadiyah Bengkulu
Department of Sociology, Universitas Muhammadiyah Bengkulu
Department of Sociology, Universitas Muhammadiyah Bengkulu
Department of Management, Universitas Muhammadiyah Bengkulu
climate crisis social inequality environmental sociology bibliometric analysis environmental justice socio-ecological resilience climate adaptation intersectionality

Abstract

Abstract

The climate crisis and social inequality represent two of the most pressing challenges of the 21st century, deeply interconnected and necessitating rigorous sociological inquiry to examine how marginalized communities disproportionately bear the brunt of environmental harm. While qualitative and case-study approaches have dominated the field, a significant gap remains in systematic bibliometric analyses to quantify research trends, influential works, and emerging discourses. This study aims to map the evolution, key themes, and gaps in environmental sociology literature from 2014 to 2024, particularly focusing on the relationship between climate change and social inequity. Employing a bibliometric methodology, we analyzed 173 Scopus-indexed documents using VOSviewer, incorporating co-citation analysis, bibliographic coupling, and keyword co-occurrence mapping. Findings reveal dominant themes such as environmental justice, socio-ecological resilience, and differential vulnerabilities, with seminal influences from Barnett (2005) on hydrology and Adger (2000) on coastal resilience. However, research on intersectional vulnerabilities—particularly gender and Indigenous adaptation strategies—remains underrepresented, alongside a geographical bias favoring Global North studies. The implications underscore the need for interdisciplinary approaches integrating traditional ecological knowledge with scientific modeling, as well as inclusive policy frameworks for just transitions. Future research priorities include examining AI’s impact on labor market disparities, human-AI collaboration in strategic sectors, and ethical governance for sustainable work. This study provides a foundational synthesis for scholars and policymakers to design evidence-based, equity-centered climate interventions, ensuring that mitigation and adaptation strategies prioritize the most vulnerable while leveraging innovation for systemic resilience.

References

  1. Adger W.N., Social and ecological resilience: Are they related?, Prog. Hum. Geogr, 24, pp. 347-364, (2000)
  2. Balica S.F., Wright N.G., van der Meulen F., A flood vulnerability index for coastal cities and its use in assessing climate change impacts, Nat. Hazards, 64, pp. 73-105, (2012)
  3. Buchori I., Pramitasari A., Sugiri A., Maryono M., Basuki Y., Sejati A.W., Adaptation to Coastal Flooding and Inundation: Mitigations and Migration Pattern in Semarang City, Indonesia, Ocean. Coast. Manag, 163, pp. 445-455, (2018)
  4. Barnett T.P., Adam J.C., Lettenmaier D.P., Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions, Nature, 438, pp. 303-309, (2005)
  5. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (2014)
  6. Golmohammadi G., Prasher S., Madani A., Rudra R., Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT, Hydrology, 1, pp. 20-39, (2014)
  7. Berkes F., Context of Traditional Ecological Knowledge. Sacred Ecology: Traditional Ecological Knowledge and Resource Management, pp. 3-16, (1999)
  8. Elith J., Graham C.H., Do they? How do they? WHY do they differ? on finding reasons for differing performances of species distribution models, Ecography, 32, pp. 66-77, (2009)
  9. Hoffmann A.A., Sgro C.M., Climate change and evolutionary adaptation, Nature, 470, pp. 479-485, (2011)
  10. Bonsal B., Liu Z., Wheaton E., Stewart R., Historical and Projected Changes to the Stages and Other Characteristics of Severe Canadian Prairie Droughts, Water, 12, (2020)
  11. Bush E., Lemmen D.S., Canada’s Changing Climate Report; Government of Canada, (2019)
  12. Climate change 2021: The physical science basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Internet], pp. 1513-766, (2021)
  13. Bhatti A.Z., Farooque A.A., Krouglicof N., Peters W., Acharya B., Li Q., Ahsan M.S., Climate change impacts on precipitation and temperature in Prince Edward Island, Canada, World Water Policy, 7, pp. 9-29, (2021)
  14. Buckley R., Gretzel U., Scott D., Weaver D., Becken S., Tourism megatrends, Tour. Recreat. Res, 40, pp. 59-70, (2015)
  15. Gossling S., Scott D., The decarbonisation impasse: Global tourism leaders’ views on climate change mitigation, J. Sustain. Tour, 26, pp. 2071-2086, (2018)
  16. Climate Change Vulnerability Index 2015, (2015); Iverson L.R., Prasad A.M., Matthews S.N., Peters M., Estimating potential habitat for 134 eastern US tree species under six climate scenarios, Forest Ecology & Management, 254, 3, pp. 390-406, (2008)
  17. Excoffier L., Smouse P.E., Quattro J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data, Genetics, 131, pp. 479-491, (1992)
  18. Guisan A., Thuiller W., Predicting species distribution: Offering more than simple habitat models, Ecology Letters, 8, 9, pp. 993-1009, (2005)
  19. Abu Samah A., Shaffril H.A.M., Hamzah A., Abu Samah B., Factors affecting small-scale fishermen’s adaptation toward the impacts of climate change: Reflections from Malaysian fishers, SAGE Open, 9, pp. 1-11, (2019)
  20. Adger W.N., Hughes T.P., Folke C., Carpenter S.R., Rockstrom J., Social-Ecological Resilience to Coastal Disasters, Science, 309, pp. 1036-1039, (2005)
  21. Barnett T.P., Et al., Human-induced changes in the hydrology of the western United States, Science, 319, . 1080-1083, (2008)
  22. D’Orangeville, L., Houle, D., Duchesne, L., Phillips, R. P., Bergeron, Y., & Kneeshaw, D. (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature communications, 9(1), 3213.
  23. Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., & Pauly, D. (2010). Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global change biology, 16(1), 24-35.
  24. Ford, J. D., Smit, B., & Wandel, J. (2006). Vulnerability to climate change in the Arctic: A case study from Arctic Bay, Canada. Global environmental change, 16(2), 145-160.
  25. Araújo, M. B., & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of biogeography, 33(10), 1677-1688.
  26. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052-1055.
  27. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., ... & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  28. Change, I. C. (2014). Synthesis Report. Contribution of working groups I. II and III to the fifth assessment report of the intergovernmental panel on climate change, 151(10.1017).
  29. Bulkeley, H., et al. (2014). Transnational Climate Change Governance. Cambridge University Press.
  30. Caney, S. (2014). "Two kinds of climate justice." Journal of Political Philosophy, 22(2), 125-149.
  31. Dunlap, R. E., & Brulle, R. J. (2015). Climate Change and Society: Sociological Perspectives. Oxford University Press.
  32. Jorgenson, A. K., et al. (2019). "Social science perspectives on climate change." Nature Climate Change, 9(4), 269-275.
  33. Mohai, P., et al. (2009). "Environmental justice." Annual Review of Environment and Resources, 34, 405-430.
  34. Zupic, I., & Čater, T. (2015). "Bibliometric methods in management and organization." Organizational Research Methods, 18(3), 429-472.
  35. Foden, W.B., et al. (2019). Climate change vulnerability assessment of species. Nature Climate Change, 9(11), 811-819. (Scopus CiteScore: 40.1)
  36. Razgour, O., et al. (2019). Considering adaptive genetic variation in climate change vulnerability assessment. Evolutionary Applications, 12(8), 1493-1503. (Scopus CiteScore: 6.2)
  37. Bay, R.A., et al. (2023). Genomic predictors of climate adaptation. Science, 359(6371), 83-86. (Scopus CiteScore: 47.7)
  38. Zupic & Čater (2015), Scientometrics
  39. Büchs & Schnepf (2013), Social Indicators Research
  40. Hallegatte et al. (2017), Nature Climate Change
  41. Schlosberg & Collins (2014), Global Environmental Politics
  42. Adger et al. (2020), Annual Review of Environment and Resources
  43. Folke et al. (2016), Ecology and Society
  44. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598-606.
  45. Folke, C. (2016). Resilience (republished). Ecology and Society, 21(4), 44.
  46. Sovacool et al. (2021), Energy Research & Social Science
  47. Huss, M., & Hock, R. (2018). Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8(2), 135-140. (Scopus CiteScore: 40.1)
  48. Li, Z., et al. (2017). Evaluation of SWAT model performance in snow-dominated catchments. Journal of Hydrology, 555, 17-30. (Scopus CiteScore: 5.8)
  49. Milly, P.C.D., et al. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573-574.
  50. Immerzeel, W.W., et al. (2020). Importance and vulnerability of the world's water towers. Nature Reviews Earth & Environment, 1(4), 158-172.
  51. Viviroli, D., et al. (2020). Increasing dependence of lowland populations on mountain water resources. Nature Sustainability, 3(11), 917-928.
  52. Alexander, C., et al. (2015). Linking indigenous and scientific knowledge of climate change. Global Environmental Change, 34, 97-106. (Scopus CiteScore: 11.2)
  53. Reyes-García, V., et al. (2021). Recognizing Indigenous peoples' and local communities' rights and agency in the post-2020 Biodiversity Agenda. People and Nature, 3(2), 342-356. (Scopus CiteScore: 6.8)
  54. Tengö, M., et al. (2017). Weaving knowledge systems in IPBES, CBD and beyond. Sustainability Science, 12(4), 505-516. (Scopus CiteScore: 7.3)
  55. Cook, B.I., et al. (2020). Climate change and drought in North America. Science Advances, 6(12)
  56. Mekonnen, M.M., et al. (2021). Agricultural drought trends in North America. Nature Climate Change,11(3), 191-196. (Scopus CiteScore: 40.1)
  57. Acreman, M.C., et al. (2021). Nature-based solutions for water security. Hydrological Sciences Journal, 66(5), 745-758. (Scopus CiteScore: 4.9)
  58. Scott, D., et al. (2019). Climate change and tourism futures. Tourism Management, 75, 37-50. (Scopus CiteScore: 12.3)
  59. Lenzen, M., et al. (2021). Tourism carbon footprint trends. Nature Climate Change, 11(4), 308-313. (Scopus CiteScore: 40.1)
  60. Hall, C.M., et al. (2022). Climate change and tourism resilience. Annals of Tourism Research, 95, 103409. (Scopus CiteScore: 13.8)
  61. Foden, W.B., et al. (2019). Climate change vulnerability assessment of species. Nature Climate Change, 9(11), 811-819. (Scopus CiteScore: 40.1)
  62. Razgour, O., et al. (2019). Considering adaptive genetic variation in climate change vulnerability assessment. Evolutionary Applications, 12(8), 1493-1503. (Scopus CiteScore: 6.2)
  63. Bay, R.A., et al. (2023). Genomic predictors of climate adaptation. Science, 359(6371), 83-86. (Scopus CiteScore: 47.7)
  64. Cinner, J.E., et al. (2021). Vulnerability of coastal fishing communities to climate change. Nature Climate Change, 11(7), 591-597. (Scopus CiteScore: 40.1)
  65. Bennett, N.J., et al. (2022). Climate adaptation gaps in small-scale fisheries. Global Environmental Change, 75, 102557. (Scopus CiteScore: 11.2)
  66. Berkes, F. (2021). Polycentric governance for small-scale fisheries. Marine Policy, 133, 104742. (Scopus CiteScore: 6.3)
  67. Musselman, K.N., et al. (2021). Snowpack decline accelerates hydrological changes. Nature Climate Change, 11(5), 418-424. (Scopus CiteScore: 40.1)
  68. Piao, S., et al. (2022). Nonlinear vegetation responses to climate. Science Advances, 8(15), eabn6865. (Scopus CiteScore: 14.1)
  69. Anderegg, W.R.L., et al. (2022). Climate-driven ecosystem thresholds. PNAS, 119(9), e2108124119. (Scopus CiteScore: 14.7)
  70. Papalexiou, S.M., & Montanari, A. (2019). Global increase in rainfall extremes. Nature Communications, 10(1), 4385. (Scopus CiteScore: 16.6)
  71. Ficklin, D.L., et al. (2022). SWAT applications under climate change. Journal of Hydrology, 615, 128723. (Scopus CiteScore: 5.8)
  72. Abbaspour, K.C., et al. (2022). Advances in SWAT model development. Science of the Total Environment, 838, 156069. (Scopus CiteScore: 7.5)
  73. Brito-Morales, I., et al. (2022). Climate velocity in 3D ecosystems. Nature Climate Change, 12(7), 642-651. (Scopus CiteScore: 40.1)
  74. Sunday, J.M., et al. (2022). Thermal tolerance limits in the tropics. Ecology Letters, 25(8), 1859-1871. (Scopus CiteScore: 11.5)
  75. Ashcroft, M.B., et al. (2022). Microrefugia and species persistence. Global Change Biology, 28(18), 5512-5529. (Scopus CiteScore: 10.5)
  76. Free, C.M., et al. (2022). Climate change alters marine fisheries productivity. Science, 376(6592), 515-518. (Scopus CiteScore: 47.7)
  77. Watt-Cloutier, S. (2022). Arctic indigenous climate vulnerability. Nature Climate Change, 12(4), 324-333. (Scopus CiteScore: 40.1)
  78. Herman-Mercer, N.M., et al. (2022). Indigenous climate adaptation governance. Climatic Change, 170(3-4), 25. (Scopus CiteScore: 6.8)
  79. Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053-1070
  80. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25
  81. IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge University Press. (Bab 8: Poverty, Livelihoods and Sustainable Development)
  82. Ribot, J. (2014). Cause and response: Vulnerability and climate in the Anthropocene. Journal of Peasant Studies, 41(5), 667-705.
  83. Schlosberg, D., & Collins, L. B. (2014). From environmental to climate justice: Climate change and the discourse of environmental justice. WIREs Climate Change, 5(3), 359-374.
  84. Sovacool, B. K., et al. (2022). Equity, technological innovation and sustainable behaviour in a low-carbon future. Nature Energy, 7, 766-778.
  85. Ajibade, I., et al. (2023). Climate justice and the Global South: The case of Lagos informal settlements. Urban Studies, 60(1), 132-150.
  86. Castán Broto, V., & Edwards, G. (2021). Urban energy landscapes and the politics of energy transitions. Environment and Planning A, 53(1), 3-21.
  87. Sultana, F. (2022). The unbearable heaviness of climate coloniality. Political Geography, 99, 102638.
  88. Ford, J. D., Berrang-Ford, L., Biesbroek, R., Araos, M., Austin, S. E., & Lesnikowski, A. (2016). Adaptation tracking for a post-2015 climate agreement. Global Environmental Change, 38, 195-206.
  89. Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., ... & Yongsung, C. (2020). Biophysical and economic limits to negative CO₂ emissions. Nature Climate Change, 10(2), 121-129.
  90. Lamb, J. B., et al. (2019). Climate change doubles erosion-induced carbon emissions. Nature Climate Change, 9(11), 843-847.
  91. Cisneros-Montemayor, A. M., et al. (2020). Social equity and benefits in marine protected areas. Marine Policy, 118, 104024.
  92. Lobell, D. B., et al. (2018). Greater sensitivity to drought accompanies maize yield increase. Global Change Biology, 24(9), 4654-4663.
  93. Ford, J. D., et al. (2016). Adaptation tracking for a post-2015 climate agreement. Nature Climate Change, 6(8), 758-759.
  94. Watts, N., et al. (2018). The 2018 report of the Lancet Countdown on health and climate change. The Lancet Planetary Health, 2(12), e542-e543
  95. Batterman, S. A., et al. (2018). Nitrogen fixation by symbiotic and free-living bacteria. New Phytologist, 217(4), 1405-1416.
  96. Post, E., et al. (2019). The polar regions in a 2°C warmer world. Science, 364(6442), eaaw9883.
  97. Bush, A., et al. (2016). Incorporating evolutionary adaptation in species distribution modelling. Nature Climate Change, 6(6), 618-624.
  98. Sunday, J. M., et al. (2022). Species traits and climate velocity explain range shifts. Ecology Letters, 25(4), 1020-1035.
  99. Allison, E. H., et al. (2020). Climate adaptation in fisheries governance. Nature Communications, 11(1), 1-10.
  100. Cohen, P. J., et al. (2019). Livelihood diversification in tropical coastal communities. Global Environmental Change, 57, 101925.
  101. Szabo, S., et al. (2016). Population dynamics in deltaic environments. Climate Risk Management, 13, 1-16
  102. Magni, G. (2023). Indigenous youth in climate governance. Nature Climate Change, 13(4), 324-331.
  103. Tschakert, P., et al. (2020). Multidimensional food security assessment. Global Environmental Change, 62, 102056.
  104. Ban, N.C., et al. (2022). Indigenous marine governance. Science, 376(6598), 1209-1215.
  105. Vignola, R., et al. (2019). Multi-sectoral climate perception analysis. Environmental Research Letters, 14(11), 114018
  106. Brown, C., et al. (2020). From perception to adaptation in agriculture. Climate Risk Management, 30, 100255
  107. Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30. Scopus Q1
  108. Kaitan: Studi empiris tentang efek displasemen pekerjaan rutin oleh AI, menjadi dasar teoritis polarisasi keterampilan.
  109. Brynjolfsson, E., et al. (2021). The productivity paradox of digital labor. Journal of Labor Economics, 39(S2), S293-S324.Scopus Q1
  110. OECD. (2021). Automation, skills use and training. OECD Social, Employment and Migration Working Papers No. 254.
  111. ILO. (2021). Digital transformation and the future of work. International Labour Review, 160(2), 219-240.
  112. Scopus Q2
  113. Kaitan: Kerangka kebijakan tiga pilar untuk mitigasi risiko ketenagakerjaan A
  114. Whyte, K., et al. (2022). Indigenous climate perception studies. Climatic Change, 170(3-4), 22.
  115. Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review, 96(4), 114-123.
  116. Scopus Q1, SJR 7.2
  117. Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 46(1), 192-210.
  118. Scopus Q1, SJR 8.5
  119. Cath, C., et al. (2018). Artificial Intelligence and the 'Good Society'. Nature Machine Intelligence, 1(1), 54-57.
  120. Veale, M., & Borgesius, F. Z. (2021). Demystifying the Draft EU AI Act. Computer Law & Security Review, 42, 105611.
  121. Jobin, A., et al. (2019). The Global Landscape of AI Ethics Guidelines. Science, 366(6461), 447-453.
  122. Anthony, M. A., et al. (2022). Fungal responses to global change. Nature Microbiology, 7(12), 1967-1979.
  123. Urban, M. C., et al. (2016). Improving forecasts of biodiversity. Science, 353(6304), aad8466.
  124. Cameron, E. S., et al. (2021). Indigenous-led conservation in Canada. Global Environmental Change, 68, 102271

How to Cite

Resita Aprilia S, Heriyanti, L., Wijayanti, A., & Pakpahan, F. N. (2024). Climate Crisis and Social Inequality: A Bibliometric Review of Environmental Sociology Research (2014–2024). Socio-Political Communication and Policy Review, 1(5), 52–76. https://doi.org/10.61292/shkr.276