Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2023-09-06

Klasifikasi Data Kesehatan Mental di Industri Teknologi Menggunakan Algoritma Random Forest

Universitas Jenderal Achmad Yani Cimahi
Universitas Jenderal Achmad Yani Cimahi
Universitas Jenderal Achmad Yani Cimahi
classification machine learning mental health random forest technology industry

Abstract

Abstract :  Mental health is an integral part of human well-being. Mental health disorders can affect individuals in various aspects of life. Work pressure, heavy workload, and an unhealthy lifestyle can be the main causes of mental health disorders in the workplace, such as industrial technology. Employees' mental health problems in the workplace often do not receive enough attention because they cannot be seen physically. Mental health has a significant impact on the performance that will be shown by employees in contributing to the company, it requires the company's prudence and sensitivity in observing and understanding the mental health conditions of employees. In this study, the Open Source Mental Illness (OSMI) survey data was classified using the Random Forest algorithm with the ensemble method, as well as the bootstrap tree method to improve the performance of the Random Forest algorithm in determining the accuracy of mental health data. The Random Forest algorithm is an ensemble learning method that combines several decision trees to improve prediction accuracy. Classification is carried out using a bootstrap tree which takes training data to train a model or ensemble so that it can take patterns and relations from the data to carry out classification, the Random Forest algorithm is an ensemble learning method that combines several decision trees for research with 80% training data and 20 test data %. The results of this study indicate a fairly good level of accuracy, which is 84%, so that it can make an important contribution in understanding the level of mental health disorders experienced by technology industry employees. The expected results of this research can improve the quality of life and productivity of employees at work.

References

  1. A. Y. Perdana, R. Latuconsina, and A. Dinimaharawati, “PREDIKSI STUNTING PADA BALITA DENGAN ALGORITMA RANDOM FOREST.”
  2. U. Srinivasulu, A. Vivek, T. B. Tech, A. Dharun, and B. Tech, “Machine Learning Techniques for Stress Prediction in Working Employees.”
  3. D. Winda Meidina and dan S. Netty Laura, “The Effect of Employees’ Mental Health on Performance Mediated by Welfare in the Workplace (Empirical Study on Information Technology Division Employees During Work From Home,” Business Management Journal, vol. 18, no. 1, p. p-ISSN, doi: 10.30813/bmj.
  4. Z. N. Rudianto, “PENGETAHUAN GENERASI Z TENTANG LITERASI KESEHATAN DAN KESADARAN MENTAL DI MASA PANDEMI The Impact Of Health Literacy On The Mental Health Consciouesness Of The Z Generation In The Pandemic,” 2022.
  5. Chaerudin Reza Alfaresy, “IMPLEMENTASI ALGORITMA NAÏVE BAYES UNTUK ANALISIS KLASIFIKASI SURVEI KESEHATAN MENTAL INDUSTRI TEKNOLOGI (STUDI KASUS: OPEN SOURCING MENTAL ILLNESS) - Repository UPN Veteran Jakarta,” 2022. https://repository.upnvj.ac.id/19626/ (accessed Nov. 30, 2022).
  6. L. Fadilah, “KLASIFIKASI RANDOM FOREST PADA DATA IMBALANCED.”
  7. Y. Santur, M. Karaköse, and E. Akın, “Random Forest Based Diagnosis Approach for Rail Fault Inspection in Railways Fetal Health Pattern Classification Using Ensemble Learning View project Data Mining in Finance: Concepts, Trend and Applications View project Random Forest Based Diagnosis Approach for Rail Fault Inspection in Railways,” 2016. [Online]. Available: https://www.researchgate.net/publication/314230630
  8. R. Supriyadi, W. Gata, N. Maulidah, A. Fauzi, I. Komputer, and S. Nusa Mandiri Jalan Margonda Raya No, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” vol. 13, no. 2, pp. 67–75, 2020, [Online]. Available: http://journal.stekom.ac.id/index.php/E-Bisnis■page67
  9. J. Wakiru, “00 WAKIRU et al: A decision tree-based classification framework for used oil analysis applying random forest feature selection A DECISION TREE-BASED CLASSIFICATION FRAMEWORK FOR USED OIL ANALYSIS APPLYING RANDOM FOREST FEATURE SELECTION100 WAKIRU et al: A decision tree-based classification framework for used oil analysis applying random forest feature selection,” PP 90-Journal of Applied Sciences, Engineering and Technology for Development JASETD, vol. 3, no. 1, p. 90, 2018.
  10. W. Apriliah et al., “SISTEMASI: Jurnal Sistem Informasi Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma Klasifikasi Random Forest,” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
  11. A. U. Zailani and N. L. Hanun, “PENERAPAN ALGORITMA KLASIFIKASI RANDOM FOREST UNTUK PENENTUAN KELAYAKAN PEMBERIAN KREDIT DI KOPERASI MITRA SEJAHTERA,” Infotech: Journal of Technology Information, vol. 6, no. 1, pp. 7–14, Jun. 2020, doi: 10.37365/jti.v6i1.61.
  12. N. Wuryani, S. Agustiani, I. Komputer, and N. Mandiri, “Random Forest Classifier untuk Deteksi Penderita COVID-19 berbasis Citra CT Scan,” Jurnal Teknik Komputer AMIK BSI, vol. 7, no. 2, 2021, doi: 10.31294/jtk.v4i2.
  13. S. J. Rigatti, “Random Forest,” J Insur Med, vol. 47, no. 1, pp. 31–39, Jan. 2017, doi: 10.17849/insm-47-01-31-39.1.
  14. https://algorit.ma/blog/random-forest-adalah-2022/.”
  15. M. Faid, M. Jasri, and T. Rahmawati, “Perbandingan Kinerja Tool Data Mining Weka dan Rapidminer Dalam Algoritma Klasifikasi,” Teknika, vol. 8, no. 1, pp. 11–16, Jun. 2019, doi: 10.34148/teknika.v8i1.95.
  16. A. Syukron and A. Subekti, “Penerapan Metode Random Over-Under Sampling dan Random Forest untuk Klasifikasi Penilaian Kredit,” JURNAL INFORMATIKA, vol. 5, no. 2, 2018.
  17. Z. Karimi, “Confusion Matrix Some of the authors of this publication are also working on these related projects: Data Cleaning Process View project.” [Online]. Available: https://www.researchgate.net/publication/355096788
  18. Alfaresy Chaerudin Reza, “Problem Solving,” Klasifikasi Kesehatan mental menggunakan metode naive bayes, 2022.
  19. S. Yu, “Uncovering the hidden impacts of inequality on mental health: A global study,” Transl Psychiatry, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41398-018-0148-0.
  20. E. L. Yearwood and V. P. Hines-Martin, “Editorial: Impact of social determinants of health on mental health,” Archives of Psychiatric Nursing, vol. 35, no. 1. W.B. Saunders, pp. A1–A2, Feb. 01, 2021. doi: 10.1016/j.apnu.2020.12.001.

How to Cite

Sebayang, E. R. B., Chrisnanto, Y. H., & Melina, M. (2023). Klasifikasi Data Kesehatan Mental di Industri Teknologi Menggunakan Algoritma Random Forest. IJESPG (International Journal of Engineering, Economic, Social Politic and Government), 1(3), 237–253. https://doi.org/10.26638/ijespg.v1i3.57